Novel Crown Ethers by Oxidative Cycloaddition of Thiopheno Crown Ethers

YuanQiang Li, ${ }^{a}$ Thies Thiemann, ${ }^{b}$ Tsuyoshi Sawada ${ }^{b}$ and Masashi Tashiro *,b
${ }^{a}$ Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koh-en, Kasuga-shi, Fukuoka 816, Japan
${ }^{\text {b }}$ Research Institute of Advanced Material, Kyushu University, 6-1 Kasuga-koh-en, Kasuga-shi, Fukuoka 816, Japan

The synthesis of the thiopheno crown ethers 4 is described. The oxidative cycloaddition of these and the known thiopheno crown ethers 2 with N-phenylmaleimide is reported. The resulting sulfoxy-bridged cycloadducts 15 and 16 are transformed oxidatively into the phthalimido crown ethers 14 and 17. An X-ray crystal-structural analysis of the cycloadduct 16b is provided. The complexation behaviour of the crown ethers towards alkali-metal and silver cations is investigated.

In the last few years some work has appeared on the synthesis and properties of thiophene-containing crown ethers. ${ }^{1-3}$ In view of recent work on polythiophenes, thiophene-containing crown ethers show some promise as subunits in conducting polymers. ${ }^{4}$ On the whole, however, publications in this area are scarce. In particular, little is known about mixed thiophenobenzo ${ }^{2}$ or thiopheno-heteroareno ${ }^{5}$ crown ethers and their complexation behaviour.

Lately we have been studying a mild, oxidative cycloaddition of thiophenes with electron-poor alkenes and alkynes. ${ }^{6}$ First reported by Torssell ${ }^{7}$ and Fallis ${ }^{8}$ for the cycloaddition of dimethylthiophenes, we have found this reaction applicable to a wide range of electron-donor-substituted thiophene systems. In molecules with more than one thiophene unit, a sucessive cycloaddition with equal or non-equal dienophiles is possible. This reaction should make thiopheno crown ethers attractive precursors for the construction of mixed thiopheno-benzo crown ethers and also for benzo crown ethers, where the benzo units are substituted. Furthermore, owing to the intermediacy of a sulfoxy-bridged compound in the reaction sequence and the above mentioned possibility of a successive cycloaddition, it is conceivable that the effect of these consecutive changes of the structure on the complexing ability of the molecules may be amenable to study.

Results and Discussion

Preparation of the Novel Thiopheno Crown Ethers and their Oxidative Cycloaddition.-The thiopheno crown ethers $2 \mathbf{2 a} / \mathbf{b}$ were prepared by the reaction of 3,4 -bis(chloromethyl)-2,5dimethylthiophene 1 with disodium salts of polyethylene glycols according to the procedure of Reinhoudt ${ }^{9}$ (Scheme 1).

Scheme 1 Reagents: $\mathrm{HO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{n+2} \mathrm{H}, \mathrm{NaH}$, THF
Similarly, compounds 4a-d were prepared from dichloride 3 (Scheme 2). Only in the reaction of compound $\mathbf{3}$ with triethylene glycol ($\mathbf{3} \longrightarrow \mathbf{4 a}, n=2$) was a dimer, in this case compound 5, also isolated. Dimers have been known to form in reactions of this type. ${ }^{1.2,9}$ Compound 7, ${ }^{10}$ which was used as a model compound for the oxidative cycloaddition of thiopheno ethers,
was synthesized by acid-catalysed etherification of the dialcohol 6 (Scheme 3). Compound 7 is a very stable oxocine. It is also formed as a by-product in the hydrolysis of dichloride 3 ($\mathrm{CaCO}_{3}, 1,4$-dioxane) and was the only isolable product in the attempted dimesylation of diol 6 (methanesulfonyl chloride, pyridine).

The first oxidative cycloadditions were carried out with tricycle 7 (Scheme 4). Compound 7 reacts with both N phenylmaleimides $9 \mathbf{a} / \mathbf{b}$ and dimethyl acetylenedicarboxylate $\mathbf{8}$ upon addition of m-chloroperbenzoic acid (MCPBA) to the reaction mixture. It is thought that, in this oxidative cycloaddition, the thiophene is initially oxidized to a thiophene S-monoxide. This reactive intermediate, representative analogues of which have already been isolated under similar conditions, ${ }^{11}$ then cycloadds in a formal $[4+2]$ cycloaddition. While in the primary cycloadduct of the thiophene S-monoxide with acetylenes, such as diester $8, \mathrm{SO}$ is extruded oxidatively under the reaction conditions and an aromatic product, $\mathbf{1 0}$, is formed, the cycloaddition of compound 7 with alkenes, such as maleimides 9 , yields bridged sulfoxides 11. The SO bridge in these compounds can be extruded oxidatively with potassium permanganate under phase-transfer conditions (PTC) at room temperature, ${ }^{12}$ and the aromatic products 12 are formed (Scheme 5).

In tricycle 7 only one thiophene moiety reacts in the initial cycloaddition. Cycloaddition of isolated sulfoxides 11 with N phenylmaleimide 9 a under the same conditions leads to an inseparable mixture of products. Compound $\mathbf{1 2}$, on the other hand, readily cycloadds one more molecular equivalent of N phenylmaleimide 9a to give compound 13 (Scheme 5).

Crown ethers $\mathbf{2 a} / \mathbf{b}$ and $\mathbf{4 a - d}$ react with N-phenylmaleimide 9a under oxidative conditions to give the corresponding sulfoxybridged cycloadducts $15 a / b$ and $16 a-d$ (Schemes 6 and 7). In the case of substrates $\mathbf{2 a} / \mathbf{b}$ small amounts of the SO-extruded aromatics $\mathbf{1 4 a} / \mathbf{b}$ are also formed. Although this is not mentioned by Fallis, ${ }^{8}$ small amounts of SO-extruded aromatized products are also formed in the oxidative cycloaddition of 2,5dimethylthiophene and other substituted thiophenes with alkenes. The cycloadducts are endo-products, the lone pair (on sulfur) of the SO moiety being on the same side as the newly formed double bond of the cycloadduct, as could be ascertained by an X-ray crystal structural analysis of compound 16b (Fig. 1). This stereochemistry was found in all of the SO-bridged cycloadducts formed in the oxidative cycloaddition of thiophenes with alkenes both Fallis ${ }^{8}$ and we ${ }^{6.13}$ have looked at crystallographically. The crown ethers $\mathbf{1 5 a} / \mathrm{b}$ and $\mathbf{1 6 b} \mathbf{d}$ can be transformed into the benzo thiopheno crown ethers $14 \mathbf{a} / \mathrm{b}$ and 17a-c by oxidative extrusion of SO under the same conditions as for extrusion from adducts 11 (Scheme 7).

Scheme 2 Reagents: $\mathrm{HO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{n+1} \mathrm{H}, \mathrm{NaH}$, THF

Scheme 3 Reagents: i, CaCO_{3} (aq.), 1,4-dioxane; ii, $\mathrm{H}_{3} \mathrm{PO}_{4}$

Scheme 4 Reagents and conditions: i, MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$

Complexation.-The complexing behaviour of some thiopheno crown ethers has been studied. ${ }^{1.14}$ The complexation of thiopheno crown ethers with alkali metals \{in the form of trichloro(ethylene)platinum[II] salts $\}$ has been investigated extensively by Reinhoudt et al. ${ }^{15}$ We were interested to compare the complexing behaviour of thiopheno crown ethers with two thiopheno subunits with published results ${ }^{1}$ for similar thiapheno crown ethers with one thiophene moiety. Furthermore, we wanted to see what effect the exchange of a thiophene moiety (e.g., in compound 4b) for an acceptor-substituted 7thiabicyclo[2.2.1]heptene substructure (as in compound 16b) or an acceptor-substituted benzo unit (as in compound 17a) would have on the complexation behaviour of the corresponding crown ethers towards alkali cations. For this purpose the extractabilities for alkali ions was compared for the
compounds $\mathbf{4 b} \mathbf{d}, \mathbf{5}, 14 / 15 b, 16 b / \mathbf{c}, 17 \mathrm{a}$ and $18{ }^{1}$ (see Table 1) by using Pedersen's extraction method. ${ }^{16}$ Also, the complexation behaviour towards Ag^{+}was investigated.

The thiophene crown ethers $\mathbf{4 c}$ and $\mathbf{4 d}$ show moderate complexation of alkali cations, but very little selectivity, with a slight preference of the larger crown ether (4d) for the larger cation (Cs^{+}) as compared with crown 4 c (preference for the smaller Rb^{+}). They are similar to the thiopheno analogue of a 23-crown-7 18^{1} in their complexation of alkali cations. The good complexation behaviour of crown $4 \mathbf{c}$ (and to a lesser extent, crown 4d) towards Ag^{+}is of interest. This selectivity for Ag^{+}is especially marked for crown $\mathbf{4 b}$, which shows poor complexation of alkali cations. The complexing ability for Ag^{+} decreases with increasing ring size of the crown ether $(\mathbf{4 b}>\mathbf{4 c}>\mathbf{4 d})$. The smaller crown $\mathbf{4 a}$, on the other hand,
shows virtually no ability to complex Ag^{+}. Compounds 5 , $\mathbf{1 4 b} / \mathbf{1 5 b}$ and 17 a , however, also show selectivities towards Ag^{+}. Whether a thiophene unit is directly involved in the complexation of Ag^{+}in crowns $\mathbf{4 b - 4 d}, 5$ and 17 a is currently being investigated. The selectivities for Ag^{+}of compounds $14 \mathrm{~b} / 15 \mathrm{~b}$ is less readily understood.

The primary cycloadducts of thiopheno crown ethers with maleimides show low extractabilities for alkali cations (14b, 16b and 16c), as also do the SO-extruded products, the tetracycle 15b, and the mixed benzo thiopheno crown ether 17b.

In conclusion, thiopheno crown ethers can be cycloadded oxidatively with electron-poor dienophiles at room temperature. In the cases studied the exchange of a thiophene unit in

Table 1 Extraction of alkali metal picrates with thiopheno crown ethers ${ }^{\text {a }}$

Crown compound	Extractability (\%)					
	Li^{+}	Na^{+}	K^{+}	Rb^{+}	Cs^{+}	Ag^{+}
14b	1	11	7	5	5	65
15b	0.3	4	2	1	3	47
5	1	3	21	27	27	57
4b	1	12	13	10	9	92
4 c	3	10	63	67	64	80
4d	5	16	50	61	70	60
16b	3	4	2	3	3	14
16c	2	2	8	5	2	13
17a	3	4	4	9	4	36
$18{ }^{1}$	4	16	51	63	68	

${ }^{a}$ Measured by Pedersen's method ${ }^{16}$ at $25^{\circ} \mathrm{C}$; aqueous phase: [picrate acid $]=7 \times 10^{-5} \mathrm{~mol} \mathrm{dm}{ }^{-3}, \quad\left[\mathrm{MNO}_{3}\right]=0.1 \mathrm{~mol} \mathrm{dm}^{-3}$; organic phase $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: [crown compound] $=7 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$. Water$\mathrm{CH}_{2} \mathrm{Cl}_{2}=1.1(\mathrm{v} / \mathrm{v})$.

Scheme 5 Reagents and conditions: i, $\mathrm{KMnO}_{4}, \mathrm{TBABr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp.; ii, MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
these crown ethers against an electon-acceptor-substituted thiabicyclo[2.2.1]heptene oxide substructure or a phthalimido unit led to a decrease of complexing ability of these structures for alkali cations. Some of the thiopheno crown ethers show high extractability towards Ag^{+}.

Experimental

General.-M.p.s were determined on a Mitamurariken MELT THERMO and are uncorrected. IR spectra were measured on a JASCO-102 spectrometer. NMR spectra were recorded at 270 MHz (proton) and at 67.9 MHz (carbon-13) with a JEOL GSX-270 spectrometer with SiMe_{4} as internal standard. J-Values are given in Hz . UV spectra were measured on a Hitachi 220 A spectrophotometer. Mass spectra were obtained on a JEOL JMS-OISG-2 mass spectrometer at 70 eV using a direct-inlet system. Column chromatography was carried out on silica gel (Wako gel, C-300).

For the extractions (Table 1) spectroscopy grade dichloromethane (99.0%) was used.
The thiopheno crown ethers $\mathbf{2 a}$ and $\mathbf{2 b}$ were obtained according to literature procedures. ${ }^{9}$

Typical Preparation of the Thiopheno Crown Ethers 4.Sodium hydride (60% suspension in white oil; $1.0 \mathrm{~g}, 25 \mathrm{mmol}$) and triethylene glycol ($0.9,6 \mathrm{mmol}$) in dry tetrahydrofuran (THF) ($100 \mathrm{~cm}^{3}$) were stirred at $60^{\circ} \mathrm{C}$ for 1 h . The solution was cooled to $25^{\circ} \mathrm{C}$ and a solution of bis-(4-chloromethyl-2,5-dimethyl-3-thienyl)methane $3(2.0 \mathrm{~g}, 6.0 \mathrm{mmol})$ in dry THF (120 cm^{3}) was added dropwise. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 14 h . It was then cooled to $25^{\circ} \mathrm{C}$, and the precipitate formed was filtered off. The filtrate was concentrated at $40^{\circ} \mathrm{C}$ and the residue was separated by column chromatography on silica gel with hexane-diethyl ether ($1: 2$). First fraction, 4,6,21,23-tetramethyl-9,12,15,18-tetraoxa-5,22-dithiatricyclo[18.3.0.0 ${ }^{3.7}$]tricosa-1(23),3,6,20-tetraene $\mathbf{4 a}(0.67 \mathrm{~g}, 27 \%)$, m.p. $91-92^{\circ} \mathrm{C}$ (Found: C, 61.3; H, 7.3. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires C , $61.46 ; \mathrm{H}, 7.37 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 1440,1120$ and 1024 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.95(6 \mathrm{H}, \mathrm{s}), 2.37(6 \mathrm{H}, \mathrm{s}), 3.60-3.82(12 \mathrm{H}, \mathrm{m}), 3.92$ $(2 \mathrm{H}, \mathrm{s})$ and $4.40(4 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 12.90(2 \mathrm{C}), 13.01(2 \mathrm{C})$, 25.88, 65.16 (2 C), 69.25 (2 C), 70.40 (2 C), 71.03 (2 C), 129.92 (2 C), 132.94 (2 C), 134.37 (2 C) and 134.95 (2 C); $m / z 410$ (M^{+}, 64.1%), 260 (77.6) and 245 (100); second fraction, $4,6,21,23$, 27,29,44,46-octamethyl-9, 12,15,18,32,35,38,41-octaoxa-5,22, 28,45 -tetrathiapentacyclo $\left[41.3 .0 .0^{3.7} .0^{20.24} .0^{26.30}\right]$ hexatetra-conta-1(46),3,6,20,23,26,29,43-octaene 5 ($0.63 \mathrm{~g}, 13 \%$), oil (Found: C, 61.5; H, 7.5. $\mathrm{C}_{42} \mathrm{H}_{60} \mathrm{O}_{8} \mathrm{~S}_{4}$ requires C, $61.46 ; \mathrm{H}$, $7.32 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1456,1350$ and $1090 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.03$ $(12 \mathrm{H}, \mathrm{s}), 2.35(12 \mathrm{H}, \mathrm{s}), 3.47-3.60(24 \mathrm{H}, \mathrm{m}), 3.82(4 \mathrm{H}, \mathrm{s})$ and $4.29(8 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.92(4 \mathrm{C}), 13.07(4 \mathrm{C}), 25.84(2 \mathrm{C})$, 64.76 (4 C), 68.73 (4 C), 70.66 (8 C), 129.97 (4 C), 133.42 (4 C), $134.03(4 \mathrm{C})$ and $134.54(4 \mathrm{C}) ; m / z 820\left(\mathrm{M}^{+}, 78.0 \%\right), 670(22.1)$, 410 (30.1) and 260 (100).

Analogously were prepared tricycles $\mathbf{4 b}-\mathbf{4 d}$:
4,6,24,26-Tetramethyl-9,12,15,18,21-pentaoxa-5,25-dithiatricyclo $\left[21.3 .0 .0^{3.7}\right]$ hexacosa-1(26),3,6,23-tetraene 4b (61%), oil (Found: C, 61.3; H, 7.6. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires $\mathrm{C}, 60.77 ; \mathrm{H}$,

Scheme 6 Reagents and conditions: MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$

Scheme 7 Reagents and conditions: i, MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; ii, $\mathrm{KMnO}_{4}, \mathrm{TBABr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp.

Fig. 1 ORTEP-drawing of compound 16b. Important bonds (\AA) and angles $\left({ }^{\circ}\right)$ are: $\mathrm{S}(2)-\mathrm{O}(8), 1.481(3) ; \mathrm{C}(1)-\mathrm{C}(17), 1.348(5) ; \mathrm{C}(19)-\mathrm{C}(22)$, $1.512(5) ; \mathrm{C}(22)-\mathrm{C}(23), 1.550(5) ; \mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19), 109.5(2) ; \mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(22), 107.8(3) ; \mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20), 112.2(3) ; \mathrm{C}(1)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$, $-61.2(3) ; C(23)-S(2)-C(18)-C(19), 55.7(2)$. The crown 'handle' of compound 16b exhibits a high degree of thermal motion at room temperature.

18^{1}
$7.58 \%) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{1} 1450,1350$ and $1112 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.99$ ($6 \mathrm{H}, \mathrm{s}$), $2.38(6 \mathrm{H}, \mathrm{s}), 3.54-3.78(16 \mathrm{H}, \mathrm{m}), 3.86(2 \mathrm{H}, \mathrm{s})$ and 4.36 $(4 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.96,13.12,25.98,64.96,69.31,70.78,70.89$, $70.92,129.91,133.44,134.34$ and $134.63 ; m / z 454\left(\mathrm{M}^{+}, 27.0 \%\right)$, 260 (81.2).

4,6,27,29-Tetramethyl-9,12,15,18,21,24-hexaoxa-5,28-di-
thiatricyclo $\left[24.3 \cdot 0.0^{3.7}\right]$ nonacosa-1(29),3,6,26-tetraene $\mathbf{4 c}$ (37%), oil (Found: C, $59.75 ; \mathrm{H}, 7.6 . \mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires C, $60.21 ; \mathrm{H}, 7.68 \%$) ; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1460,1355$ and 1110 br ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.04(6 \mathrm{H}, \mathrm{s}), 2.37(6 \mathrm{H}, \mathrm{s}), 3.44-3.53(20 \mathrm{H}, \mathrm{m})$, $3.84(2 \mathrm{H}, \mathrm{s})$ and $4.33(4 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.98(2 \mathrm{C}), 13.10$ (2 C), 25.90, 64.76 (2 C), 68.86 (2 C), 70.73 (8 C), 129.99 (2 C), $133.46(2 \mathrm{C}), 134.20(2 \mathrm{C})$ and $134.63(2 \mathrm{C}) ; m / z 498\left(\mathrm{M}^{+}\right.$, 60.6%), 260 (100) and 245 (63.4).

4,6,30,32-Tetramethyl-9,12,15,18,21,24,27-heptaoxa-5,31-dithiatricyclo[27.3.0.0 ${ }^{3.7}$]dotriaconta-1(32),3,6,29-tetraene 4d (43%), oil (Found: $\mathrm{C}, 59.5 ; \mathrm{H}, 7.35 . \mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{~S}_{2}$ requires C , $59.79 ; \mathrm{H}, 7.74 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1452,1356$ and 1120 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.04(6 \mathrm{H}, \mathrm{s}), 2.37(6 \mathrm{H}, \mathrm{s}), 3.61-3.68(24 \mathrm{H}, \mathrm{m}), 3.83$
$(2 \mathrm{H}, \mathrm{s})$ and $4.32(2 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.92(2 \mathrm{C}), 13.05(2 \mathrm{C})$, $25.82,64.74(2 \mathrm{C}), 68.77(2 \mathrm{C}), 70.69(10 \mathrm{C}), 129.97$ (2 C), 133.39 (2 C), $134.05(2 \mathrm{C})$ and $134.55(2 \mathrm{C}) ; m / z 542\left(\mathrm{M}^{+}, 23.5 \%\right), 262$ (51.8) and 246 (100).

Preparation of 4,6,12,14-Tetramethyl-9-oxa-5,13-dithiatricyclo[9.3.0.0 ${ }^{3.7}$]tetradeca-1(14),3,6,11-tetraene 7.-A solution of bis-(4-hydroxymethyl-2,5-dimethyl-3-thienyl)methane $6{ }^{10}$ $(0.5 \mathrm{~g}, 1.7 \mathrm{mmol})$ in benzene $\left(120 \mathrm{~cm}^{3}\right)$ was added dropwise to a mixture of phosphoric acid ($15 \mathrm{~cm}^{3}$) and benzene $\left(30 \mathrm{~cm}^{3}\right)$ during 5 h . The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h , after which it was poured into cold water $\left(50 \mathrm{~cm}^{3}\right)$. The mixture was extracted with diethyl ether $\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The organic phase was washed carefully with cold water, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated at $40^{\circ} \mathrm{C}$. The residue was separated by column chromatography on silica gel with hexane-diethyl ether ($10: 1$) as eluent to give 4,6,12,14-tetramethyl-9-oxa-5,13-dithiatricyclo [9.3.0.0 ${ }^{3.7}$]tetradeca-1(14),3,6,11-tetraene $7(0.4 \mathrm{~g}, 85 \%)$, m.p. $160-161^{\circ} \mathrm{C}$ (lit., ${ }^{10} 154-155.5^{\circ} \mathrm{C}$) (Found: C, $64.6 ; \mathrm{H}, 6.5$. Calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{OS}_{2}: \mathrm{C}, 64.75 ; \mathrm{H}, 6.47 \%\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $2875,1470,1440,1250,1110,1035$ and $900 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.28(6$ $\mathrm{H}, \mathrm{s}), 2.40(6 \mathrm{H}, \mathrm{s}), 3.77(2 \mathrm{H}, \mathrm{s})$ and $4.60(4 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z 278$ $\left(\mathrm{M}^{+}, 100 \%\right), 263(78.3), 247(20.8)$ and 125 (94.1).

Oxidative Cycloaddition of Compound 7 with Dimethyl Acetylenedicarboxylate 8.-To a solution of compound $7(0.3 \mathrm{~g}$, $1.1 \mathrm{mmol})$ and dimethyl acetylenedicarboxylate $\mathbf{8}(0.3 \mathrm{~g}, 2.1$ mmol) in dichloromethane ($10 \mathrm{~cm}^{3}$) was added dropwise a solution of MCPBA ($65 \mathrm{wt} . \% ; 0.6 \mathrm{~g}, 2.3 \mathrm{mmol}$) in dichloromethane ($20 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ during 2 h . The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h and was then poured into saturated aq. sodium hydrogen carbonate ($10 \mathrm{~cm}^{3}$). The phases were separated and the aqueous phase was extracted with dichloromethane ($2 \times 10 \mathrm{~cm}^{3}$). The collected organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated at $40^{\circ} \mathrm{C}$. The residue was separated by column chromatography on silica gel with diethyl etherhexane ($1: 1$) as eluent. Fraction 1, cycloadduct dimethyl 4,6,12,15-tetramethyl-9-oxa-5-thiatricyclo $\left[9.4 .0 .0^{3,7}\right]$ pentadeca-1(15),3,6,11,13-pentaene-13,14-dicarboxylate $10(60 \mathrm{mg}, 15 \%)$, m.p. $168-169^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 64.7 ; \mathrm{H}, 6.1 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~S}$ requires C , $64.93 ; \mathrm{H}, 6.23 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1736,1435,1212$ and 1030 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.18(3 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s}), 2.32(3 \mathrm{H}, \mathrm{s}), 2.43(3 \mathrm{H}, \mathrm{s})$, $3.85(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}), 3.98(2 \mathrm{H}, \mathrm{s}), 4.28(2 \mathrm{H}, \mathrm{s})$ and 5.04 $(2 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.65,12.77,12.90,13.08,26.16,50.84,50.92$, $63.23,65.34,72.69,74.02,126.29,128.86,129.18,130.35,131.37$, $131.41,132.12,132.67,133.17,137.91,174.21$ and 174.55 ; fraction 2 was the S, S-dioxide $7^{\prime}(84 \mathrm{mg}, 25 \%$) (Found: C, 57.9 ; $\mathrm{H}, 5.8 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires $\mathrm{C}, 58.06 ; \mathrm{H}, 5.81 \%$); $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1440,1285,1170$ and $1120 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.98(3 \mathrm{H}, \mathrm{s}), 2.19$ ($3 \mathrm{H}, \mathrm{s}$), $2.29(6 \mathrm{H}, \mathrm{s}), 3.69(2 \mathrm{H}$, br s), $4.39(2 \mathrm{H}$, br s) and 4.79 $(2 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 6.85,7.08,12.78,12.89,25.18,62.48$ (br), 67.15 (br), 130.94, 131.05, 132.38 and 135.44 .

Oxidative Cycloaddition of Compound 7 with N-Phenylmaleimide 9a.-To a solution of compound $7(0.30 \mathrm{~g}, 1.08$ $\mathrm{mmol})$ and N-phenylmaleimide $9 \mathbf{9 a}(0.37 \mathrm{~g}, 2.16 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was added dropwise a solution of MCPBA ($65 \mathrm{wt} . \% ; 0.6 \mathrm{~g}, 2.4 \mathrm{mmol}$) in dichloromethane ($20 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ during 2 h . The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 5 h and was then poured into saturated aq. sodium hydrogen carbonate ($10 \mathrm{~cm}^{3}$). The phases were separated and the aqueous phase was extracted with dichloromethane $\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The collected organic phases were collected, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated at $40^{\circ} \mathrm{C}$. The residue was separated by column chromatography on silica gel with hexane-diethyl ether ($1: 3$) as eluent to give 1,5,7,13-tetramethyl-16-phenyl-10-oxa-6,19-dithia-16-azapentacyclo[11.5.1.0 $\left.0^{2,12} .0^{4,8} .0^{14,18}\right]$ nonadeca-
2(12),4,7-triene-15,17-dione 19-oxide 11a ($0.19 \mathrm{~g}, 38 \%$), m.p.

231-233 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 64.8 ; \mathrm{H}, 5.5 ; \mathrm{N}, 3.0 . \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 64.24 ; \mathrm{H}, 5.35 ; \mathrm{N}, 3.00 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1715$, 1380,1185 and $1070 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.75(3 \mathrm{H}, \mathrm{s}), 1.87(3 \mathrm{H}, \mathrm{s}), 2.20$ ($3 \mathrm{H}, \mathrm{s}$), $2.25(3 \mathrm{H}, \mathrm{s}), 3.49(2 \mathrm{H}, \mathrm{m}), 3.79(2 \mathrm{H}, \mathrm{m}), 4.13(2 \mathrm{H}, \mathrm{s})$, $4.46(1 \mathrm{H}, \mathrm{d}, J 14), 4.59(1 \mathrm{H}, \mathrm{d}, J 14), 6.95(2 \mathrm{H}, \mathrm{m})$ and $7.38-7.40$ $(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.65,12.78,12.90,13.08,26.16,50.84$, $50.92,63.23,65.34,72.68,74.02,126.29$ (3 C), 128.86, 129.18 (3 C), 130.35, 131.41, 132.13, 132.67, 133.91, 174.21 and 174.55; $m / z 467\left(\mathrm{M}^{+}, 29.0 \%\right), 419\left(\mathrm{M}^{+}-\mathrm{SO}, 100\right)$.
Analogously, by reaction of compound 7 with N - p chlorophenyl)maleimide $9 \mathbf{9 b}$, was prepared 16 -(p-chlorophenyl-1,5,7,13-tetramethyl-10-oxa-6,19-dithia-16-azapentacyclo[11.5.1.0 $\left.{ }^{2,12} .0^{4.8} .0^{14,18}\right]$ nonadeca-2(12),4,7-triene-15,17-dione 19-oxide $11 \mathrm{~b}\left(32 \%\right.$), m.p. $197-199^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1710$, $1495,1378,1160$ and $1064 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.74(3 \mathrm{H}, \mathrm{s}), 1.87(3 \mathrm{H}, \mathrm{s})$, $2.22(3 \mathrm{H}, \mathrm{s}), 2.23(3 \mathrm{H}, \mathrm{s}), 3.47(2 \mathrm{H}, \mathrm{m}), 3.74(1 \mathrm{H}, \mathrm{d}, J 8.3), 3.79$ (1 H, d, J 8.3), $4.13(1 \mathrm{H}, \mathrm{d}, J 15.5), 4.18(1 \mathrm{H}, \mathrm{d}, J 15.5), 4.48$ $(1 \mathrm{H}, \mathrm{d}, J 14.1), 4.54(1 \mathrm{H}, \mathrm{d}, J 14.1), 6.90(2 \mathrm{H}, \mathrm{m})$ and 7.36 ($2 \mathrm{H}, \mathrm{m}$) ; $m / z 501\left(\mathrm{M}^{+}\left[{ }^{35} \mathrm{Cl}\right], 22.0 \%\right.$), $453\left(\mathrm{M}^{+}-\mathrm{SO}, 75.2\right)$, 423 (48.6) and 241 (56.4).

Preparation of 4,6,12,18-Tetramethyl-15-phenyl-9-oxa-5-thia-15-azatetracyclo $\left[9.7 .0 .0^{3.7}, 0^{13,17}\right]$ octadeca-1(18),3,6,11,13-pentaene-14,16-dione 12 .-To a solution of sulfoxide $11 \mathrm{a}(0.9 \mathrm{~g}$, 1.9 mmol) in dichloromethane ($30 \mathrm{~cm}^{3}$) was added a solution of potassium permanganate $(0.35 \mathrm{~g}, 2.2 \mathrm{mmol})$ and tetrabutylammonium bromide (TBABr) $(0.74 \mathrm{~g}, 2.3 \mathrm{mmol})$ in dichloromethane ($30 \mathrm{~cm}^{3}$). The resulting mixture was stirred for 5 h at $25^{\circ} \mathrm{C}$. Thereafter acetic acid ($2 \mathrm{~cm}^{3}$) and water ($10 \mathrm{~cm}^{3}$) were added, the phases were separated, and the aqueous phase was extracted with dichloromethane $\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The collected organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated at $40^{\circ} \mathrm{C}$. The residue was separated by column chromatography on silica gel with diethyl ether-hexane (2:1) to give $4,6,12,18$ -tetramethyl-15-phenyl-9-oxa-5-thia-15-azatetracyclo[9.7.0.0 ${ }^{3.7}$. $0^{13},{ }^{17}$]octadeca-1(18),3,6,11,13-pentaene-14,16-dione $12(0.2 \mathrm{~g}$, 25%), m.p. $241-242^{\circ} \mathrm{C}$ (Found: C, $72.05 ; \mathrm{H}, 5.6$; N, 3.3. $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 71.94 ; \mathrm{H}, 5.52 ; \mathrm{N}, 3.36 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1712,1505$ and $1364 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.20(3 \mathrm{H}, \mathrm{s})$, $2.47(3 \mathrm{H}, \mathrm{s}), 2.76(3 \mathrm{H}, \mathrm{s}), 2.77(3 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{s})$, $5.13(2 \mathrm{H}, \mathrm{s}), 7.35-7.41(3 \mathrm{H}, \mathrm{m})$ and $7.45-7.51(2 \mathrm{H}, \mathrm{m})$.

1,5,11,17-Tetramethyl-8,20-diphenyl-14-oxa-23-thia-8,20diazahexacyclo $\left[15 \cdot 5 \cdot 1 \cdot 0^{2,16} \cdot 0^{4,12} \cdot 0^{6,10} \cdot 0^{18,22}\right]$ tricosa-2(18), 4(12),5,10-tetraene-7,9,19,21-tetraone 23 -oxide 13 was prepared analogously to compound 11a. Column chromatography of the crude product on silica gel with diethyl ether gave compound $13\left(41 \%\right.$), m.p. $240-241^{\circ} \mathrm{C}$ (Found: C, 68.9; H, 5.0; $\mathrm{N}, 4.50 . \mathrm{C}_{35} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 69.26 ; \mathrm{H}, 4.98 ; \mathrm{N}, 4.62 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.78(3 \mathrm{H}, \mathrm{s}), 1.92(3 \mathrm{H}, \mathrm{s}), 2.60$ $(3 \mathrm{H}, \mathrm{s}), 2.73(3 \mathrm{H}, \mathrm{s}), 3.76-3.83(4 \mathrm{H}, \mathrm{m}), 3.96(2 \mathrm{H}, \mathrm{s}), 4.80(1 \mathrm{H}$, $\mathrm{d}, J 13.5), 4.92(1 \mathrm{H}, \mathrm{d}, J 13.5), 7.05(2 \mathrm{H}, \mathrm{m}), 7.41(6 \mathrm{H}, \mathrm{m})$ and $7.55(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.72,13.14,13.25,14.14,28.77,50.55$, $51.07,60.34,63.37,73.24,74.20,125.97,126.81,128.12,129.06$, $129.11,131.25,131.63,133.96,134.84,135.76,139.26,141.24$, $141.64,167.48,167.51,174.07$ and $174.29 ; m / z 606\left(\mathrm{M}^{+}\right.$, 15.0%), $558\left(\mathrm{M}^{+}-\mathrm{SO}, 76\right)$ and $528(100)$.

Preparation of the Cycloadducts $\mathbf{1 5 a} / \mathbf{b}$.-Compound 15a was prepared analogously to its analogue 11a. The crude product was separated by column chromatography on silica gel with diethyl ether. Fraction 1, 15,21-dimethyl-18-phenyl-3,6,9,12-tetraoxa-18-azatricyclo[12.7.0.0. ${ }^{16,20}$]henicosa-1(21),14,16(20)-triene-17,19-dione 14a (6.0\%) m.p. 197-198 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.4; $\mathrm{H}, 6.3 ; \mathrm{N}, 3.3 . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{6}$ requires $\mathrm{C}, 67.76 ; \mathrm{H}, 6.40 ; \mathrm{N}, 3.29 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1710,1500,1390$ and $1130 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.80(6 \mathrm{H}, \mathrm{s})$, $3.72-3.87(12 \mathrm{H}, \mathrm{m}), 4.92(4 \mathrm{H}, \mathrm{s}), 7.38-7.46(3 \mathrm{H}, \mathrm{m})$ and $7.48-$ $7.52(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.44,66.81,69.85,70.01,72.04$,
126.92, 127.92, 128.44, 128.95, 131.86, 137.03, 143.59 and 167.94; $m / z 425\left(\mathrm{M}^{+}, 55.1 \%\right)$; further chromatography, with diethyl ether-methanol(97:3), gave fraction $2,1,16$-dimethyl-19-phenyl-4,7,10,13-tetraoxa-22-thia-19-azatetracyclo[14.5.1.0 $0^{2,15} .0^{17,21}$]-docos-2(15)-ene-18,20-dione 15a (32\%) m.p. $181-183{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 60.0 ; \mathrm{H}, 6.05 ; \mathrm{N}, 2.9 . \mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}$ requires $\mathrm{C}, 60.62$; $\mathrm{H}, 6.15 ; \mathrm{N}, 2.95 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1710,1500,1382$ and 1100 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.82(6 \mathrm{H}, \mathrm{s}), 3.57-3.68(12 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{s}), 4.32$ ($2 \mathrm{H}, \mathrm{d}, J 11.2$), $4.42(2 \mathrm{H}, \mathrm{d}, J 11.2), 7.25(2 \mathrm{H}, \mathrm{m})$ and $7.41-7.44$ ($3 \mathrm{H}, \mathrm{m}$); $m / z 475\left(\mathrm{M}^{+}, 29.6 \%\right), 427\left(\mathrm{M}^{+}-\mathrm{SO}, 100\right)$.

The analogous crown 15b was prepared similarly. The crude product was separated by column chromatography on silica gel with diethyl ether. Fraction 1, 18,24-dimethyl-21-phenyl-3,6,9,12,15-pentaoxa-21-azatricyclo[15.7.0.0 ${ }^{19,23}$]tetra-cosa-1(24),17,19(23)-triene-20,22-dione 14b (8\%), m.p. 153$154{ }^{\circ} \mathrm{C}$ (Found: C, 66.4; H, 6.6; N, 3.4. $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{7}$ requires C , $66.51 ; \mathrm{H}, 6.65 ; \mathrm{N}, 3.36 \%)$) $v_{\max } / \mathrm{cm}^{-1} 1710,1510,1400$ and 1110 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.81(6 \mathrm{H}, \mathrm{s}), 3.69-3.83(16 \mathrm{H}, \mathrm{m}), 4.84(4 \mathrm{H}, \mathrm{s})$ and 7.38-7.49 $(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.66,66.49,70.66,70.87,71.01$, 71.37, 126.93, 127.96, 128.41, 128.96, 131.84, 137.00, 143.54 and $167.92 ; m / z 469\left(\mathrm{M}^{+}, 5.0 \%\right), 292$ (32.0) and $89(100)$. Further chromatography, with diethyl ether-methanol (97:3), gave 1,19-dimethyl-22-phenyl-4,7,10,13,16-pentaoxa-25-thia-22azatetracyclo[17.5.1.0 $\left.{ }^{2,18} .0^{20,24}\right]$-pentacosa-2(18)-ene-21,23-
 $\mathrm{N}, 3.0 . \mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{8} \mathrm{~S}$ requires $\mathrm{C}, 60.10 ; \mathrm{H}, 6.40 ; \mathrm{N}, 2.70 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1710,1500,1384$ and $1120 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.83$ (6 H, s), $3.56-3.65(16 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{d}, J 11.9)$, $4.34(2 \mathrm{H}, \mathrm{d}, J 11.9), 7.22(2 \mathrm{H}, \mathrm{m})$ and $7.40(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 12.58, 51.12, 64.51, 69.95, 70.62, 70.78, 71.41, 73.19, 126.77, $128.66,128.98,131.86,136.85$ and $173.91 ; m / z 519\left(\mathrm{M}^{+}, 2.9 \%\right)$, 471 (\mathbf{M}^{+}- SO, 100).

Preparation of 1,5,7,22-Tetramethyl-25-phenyl-10,13,16,19-tetraoxa-6,28-dithia-25-azapentacyclo $\left[20.5 \cdot 1 \cdot 0^{2,21} \cdot 0^{4,8} .0^{23.27}\right]$ -octacosa-2(21),4,7-triene-24,26-dione 28 -oxide $\mathbf{1 6 a}$.-To a solution of compound $4 \mathbf{a}(0.41 \mathrm{~g}, 1.0 \mathrm{mmol})$ and N-phenylmaleimide $9 b(0.21 \mathrm{~g}, 1.2 \mathrm{mmol})$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of MCPBA ($65 \mathrm{wt} . \% ; 0.5 \mathrm{~g}, 2.1 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ during 1 h . The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 4 h and was then poured into saturated aq. sodium hydrogen carbonate $\left(10 \mathrm{~cm}^{3}\right)$. The phases were separated and the aqueous phase was extracted with dichloromethane ($2 \times 10 \mathrm{~cm}^{3}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated at $40^{\circ} \mathrm{C}$. The residue was separated by column chromatography on silica gel with diethyl ether to give title compound $16 \mathrm{a}\left(0.19 \mathrm{~g}, 31 \%\right.$), m.p. $109-111^{\circ} \mathrm{C}$ (Found: C, 62.3; $\mathrm{H}, 6.7$; N, 2.3. $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NO}_{7} \mathrm{~S}_{2}$ requires $\mathrm{C}, 62.08 ; \mathrm{H}, 6.22 ; \mathrm{N}$, $2.34 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 1713,1380$ and $1105 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, COSY) $1.32(3 \mathrm{H}, \mathrm{s}), 1.82(3 \mathrm{H}, \mathrm{s}), 2.29(3 \mathrm{H}, \mathrm{s}), 2.34(3 \mathrm{H}, \mathrm{s}), 3.34$ ($1 \mathrm{H}, \mathrm{d}, J 16.5$), 3.39-3.62 ($13 \mathrm{H}, \mathrm{m}$), $3.79(1 \mathrm{H}, \mathrm{d}, J 8.3), 3.90$ ($1 \mathrm{H}, \mathrm{d}, J 11.1$), $4.06(1 \mathrm{H}, \mathrm{d}, J 16.5), 4.24(1 \mathrm{H}, \mathrm{d}, J 12.2), 4.46$ ($1 \mathrm{H}, \mathrm{d}, J 12.2$), $4.94(1 \mathrm{H}, \mathrm{d}, J 11.1), 7.29-7.33(2 \mathrm{H}, \mathrm{m})$ and 7.40-7.45 (3 H, m); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 12.58, 12.98, 13.37, 13.50, 26.20, $51.20,52.40,64.44,64.73,68.54,69.72,69.85,70.15,70.23(2 \mathrm{C})$, 71.19 (2 C), 73.17, 73.77, 127.13, 128.63, 128.99, 131.79, 131.86, $132.04,133.37,133.82,133.93,138.40,173.62$ and $174.77 ; \mathrm{m} / \mathrm{z}$ $599\left(\mathrm{M}^{+}, 28.0 \%\right), 551\left(\mathrm{M}^{+}-\mathrm{SO}, 42\right)$ and 401 (100).
Compounds 16b-16d were similarly prepared.
1,5,7,25-Tetramethyl-28-phenyl-10,13,16,19,22-pentaoxa-6,31-dithia-28-azapentacyclo[23.5.1.0 $\left.0^{2.24} \cdot 0^{4,8} .0^{26,30}\right]$ hentriaconta$2(24), 4,7$-triene- 27,29 -dione 31 -oxide $16 \mathrm{~b}(37 \%)$, m.p. $70-71^{\circ} \mathrm{C}$ (Found: C, 61.4; H, 6.4; N, 2.6. $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{NO}_{8} \mathrm{~S}_{2}$ requires C, 61.57; $\mathrm{H}, 6.42 ; \mathrm{N}, 2.18 \%) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1720,1502,1385$ and 1110 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.54(3 \mathrm{H}, \mathrm{s}), 1.82(3 \mathrm{H}, \mathrm{s}), 2.13(3 \mathrm{H}, \mathrm{s}), 2.38(3 \mathrm{H}, \mathrm{s})$, $3.36-3.60(18 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{d}, J 8.0), 3.79(1 \mathrm{H}, \mathrm{d}, J 8.0), 3.87$ $(1 \mathrm{H}, \mathrm{d}, J 10.6), 4.04(1 \mathrm{H}, \mathrm{d}, J 10.6), 4.34(1 \mathrm{H}, \mathrm{d}, J 11.5), 4.39(1$ $\mathrm{H}, \mathrm{d}, J 11.5), 7.26-7.29(2 \mathrm{H}, \mathrm{m})$ and 7.38-7.50 ($3 \mathrm{H}, \mathrm{m}$);
$\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.47,13.08,13.39,13.57,51.09,51.90,63.49,64.82$, 69.02, 70.57, 70.82 (2 C), 70.91, 71.00 (2 C), 71.25, 73.37, 73.60, $76.57,77.03,77.23,77.50,126.75,128.61,129.02,129.13,131.53$, 131.86, 132.95, 133.91, 134.50, 138.60, 173.74 and 174.70; m / z $643\left(\mathrm{M}^{+}, 24.3 \%\right), 595\left(\mathrm{M}^{+}-\mathrm{SO}, 30.8\right)$ and 401 (100).

1,5,7,28-Tetramethyl-31-phenyl-10,13,16,19,22,25-hexaoxa-6,34-dithia-31-azapentacyclo[26.5.1.0 $\left.{ }^{2,27} \cdot 0^{4,8} .0^{29,33}\right]$ tetratria-conta-2(27),4,7-triene-30,32-dione 34 -oxide 16c (35%), m.p. $128-129^{\circ} \mathrm{C}$ (Found: C, 61.1; H, 6.6; N, 2.0. $\mathrm{C}_{3} \mathrm{H}_{45} \mathrm{NO}_{9} \mathrm{~S}_{2}$ requires $\mathrm{C}, 61.14 ; \mathrm{H}, 6.55 ; \mathrm{N}, 2.04 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1710,1500$, 1380 and $1100 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.56(3 \mathrm{H}, \mathrm{s}), 1.82(3 \mathrm{H}, \mathrm{s}), 2.17$ ($3 \mathrm{H}, \mathrm{s}$), $2.37(3 \mathrm{H}, \mathrm{s}), 3.37-3.73(22 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{d}, J 7.9)$, $3.79(1 \mathrm{H}, \mathrm{d}, J 7.9), 3.90(1 \mathrm{H}, \mathrm{d}, J 10.9), 4.03(1 \mathrm{H}, \mathrm{d}, J 10.9), 4.29$ ($1 \mathrm{H}, \mathrm{d}, J 11.9$), $4.37(1 \mathrm{H}, \mathrm{d}, J 11.9), 7.24-7.27(2 \mathrm{H}, \mathrm{m})$ and 7.35-7.49 ($3 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.51,13.08,13.41,13.48,26.24$, $51.10,51.84,63.50,64.80,68.95,70.69,70.78$ (3 C), 70.85 (3 C), 70.92 (2 C), $73.37,73.69,126.64,126.84,128.68,129.09$ (2 C), 131.55, 131.71, 131.84, 133.15, 133.67, 134.66, 138.45, 173.69 and 174.68; m/z $639\left(\mathrm{M}^{+}-\mathrm{SO}, 8.0 \%\right)$.

1,5,7,31-Tetramethyl-34-phenyl-10,13,16,19,22,25,28-hepta-oxa-6,37-dithia-34-azapentacyclo [29.5.1.0 $\left.{ }^{2,30} \cdot 0^{4,8} \cdot 0^{32},{ }^{36}\right]$ -
heptatriaconta-2(30),4,7-triene-33,35-dione 37 -oxide $\mathbf{1 6 d}(30 \%)$, m.p. $122-124{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 61.1 ; \mathrm{H}, 6.6 ; \mathrm{N}, 2.0 . \mathrm{C}_{37} \mathrm{H}_{49} \mathrm{NO}_{10} \mathrm{~S}_{2}$ requires $\mathrm{C}, 60.72 ; \mathrm{H}, 6.75 ; \mathrm{N}, 1.92 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1712$, 1500,1450 and $1292 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.54(3 \mathrm{H}, \mathrm{s}), 1.82(3 \mathrm{H}, \mathrm{s}), 2.19$ $(3 \mathrm{H}, \mathrm{s}), 2.36(3 \mathrm{H}, \mathrm{s}), 3.34-3.65(26 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{d}, J 8.3)$, $3.78(1 \mathrm{H}, \mathrm{d}, J 8.3), 3.89(1 \mathrm{H}, \mathrm{d}, J 10.9), 4.12(1 \mathrm{H}, \mathrm{d}, J 10.9), 4.26$ ($1 \mathrm{H}, \mathrm{d}, J 11.9$), $4.34(1 \mathrm{H}, \mathrm{d}, J 11.9)$ and $7.39-7.50(5 \mathrm{H}, \mathrm{m}) ; m / z$ $731\left(\mathrm{M}^{+}, 22.0 \%\right), 683\left(\mathrm{M}^{+}-\mathrm{SO}, 13.2\right)$ and 401 (100).

Preparation of 4,6,24,30-Tetramethyl-27-phenyl-9,12,15,18,-21-pentaoxa-5-thia-27-azatetracyclo[21.7.0.0 $0^{3,7} \cdot 0^{25.29}$]tria-conta-1(30),3,6,23,25(29)-pentaene-26,28-dione 17a.-To a solution of compound $16 \mathrm{~b}(0.3 \mathrm{~g}, 0.47 \mathrm{mmol})$ in dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of potassium permanganate [potassium manganate(viI)] ($80 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\operatorname{TBABr}(0.2 \mathrm{~g}, 0.6 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . Acetic acid (2 cm^{3}) and water ($10 \mathrm{~cm}^{3}$) were added. The phases were separated, and the aqueous phase was extracted with dichloromethane ($2 \times 10 \mathrm{~cm}^{3}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated at $40^{\circ} \mathrm{C}$. The crude product was separated by column chromatography on silica gel with diethyl ether to give title compound $17 \mathrm{a}(0.1 \mathrm{~g}, 36 \%$), m.p. $50-51{ }^{\circ} \mathrm{C}$ (Found: C, 66.1; H, 6.5; N, 2.7. $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{NO}_{7} \mathrm{~S}$ requires $\mathrm{C}, 66.75 ; \mathrm{H}, 6.58 ; \mathrm{N}, 2.36 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1720,1510,1390$ and $1150 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.84(3 \mathrm{H}, \mathrm{s}), 2.38(3 \mathrm{H}, \mathrm{s}), 2.59(3 \mathrm{H}, \mathrm{s})$, $2.84(3 \mathrm{H}, \mathrm{s}), 3.59-3.76(16 \mathrm{H}, \mathrm{m}), 4.27(2 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{s})$, $4.73(2 \mathrm{H}, \mathrm{s}), 7.36-7.47(3 \mathrm{H}, \mathrm{m})$ and $7.47-7.52(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.06,13.48,13.85,14.16,29.76,65.23,66.86,69.63$, $70.49,70.64,70.76,70.87,71.18,71.23,71.37,126.92$ (2 C), 127.90, 128.16, 128.96 (2 C), 129.65, 131.91, 132.29, 133.85, $133.98,136.60,136.80,137.34,142.86,147.29,168.07$ and 168.19; m/z $593\left(\mathrm{M}^{+}, 56.0 \%\right), 399(78)$ and 384 (100).

Compounds 17 b and 17 c were prepared analogously.
4,6,27,33-Tetramethyl-30-phenyl-9,12,15,18,21,24-hexaoxa-55-thia-30-azatetracyclo [24.7.0.0 $\left.0^{3,7} \cdot 0^{28,32}\right]$ tritriaconta-1(33), 3,6,26,28(32)-pentaene-29,31-dione 17b (42%), oil; $v_{\max }(\mathrm{KBr})$ / $\mathrm{cm}^{-1} 1718,1385$ and $1100 \mathrm{br} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.73(3 \mathrm{H}, \mathrm{s})$, $2.38(3 \mathrm{H}, \mathrm{s}), 2.62(3 \mathrm{H}, \mathrm{s}), 2.83(3 \mathrm{H}, \mathrm{s}), 3.57-3.71(20 \mathrm{H}, \mathrm{m}), 4.26$ $(2 \mathrm{H}, \mathrm{s}), 4.36(2 \mathrm{H}, \mathrm{s}), 4.69(2 \mathrm{H}, \mathrm{s})$ and 7.39-7.50 $(5 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.06,13.46,13.84,14.21,29.60,64.98,66.74,69.29$, $70.35,70.78$ (8 C) , 127.00, 127.90, 128.25, 128.95, 129.16 (2 C), 129.16, 129.72, 131.93, 132.41, 133.78, 133.96, 136.55, 136.84, 142.89 and 147.26, 168.04 and 168.14; m/z $637\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 637.2709 . \mathrm{C}_{35} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{~S}$ requires $\mathrm{M}, 637.2709$).
4,6,30,36-Tetramethyl-33-phenyl-9,12,15,18,21,24,27-hepta-oxa-5-thia-33-azatetracyclo[27.7.0.0 $0^{3,7} .0^{31.35}$ hexatriaconta-

1(36),3,6,29,31(35)-pentaene-32,34-dione 17c (45\%), oil; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{1} 1770,1715,1600,1380 \mathrm{br}$ and 1105 br ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.71(3 \mathrm{H}, \mathrm{s}), 2.39(3 \mathrm{H}, \mathrm{s}), 2.62(3 \mathrm{H}, \mathrm{s}), 2.83(3 \mathrm{H}, \mathrm{s})$, 3.58-3.72 ($24 \mathrm{H}, \mathrm{m}$), $4.25(2 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{s}), 4.69(2 \mathrm{H}, \mathrm{s})$, 7.38-7.42 ($3 \mathrm{H}, \mathrm{m}$) and 7.47-7.50 $(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 13.39$, 13.77, 13.98, 14.14, 29.54, 64.89, 66.72, 69.06, 69.87, 70.69 (10 C), 126.85, 126.92, 127.84, 128.16, 128.50, 128.64, 128.91, $129.68,131.84,131.97,132.33,133.60,133.85,136.51,136.80$, 142.73, 147.19, 167.85 and 168.12; $m / z 681\left(\mathrm{M}^{+}\right)$(Found: M^{+}, $681.2971 . \mathrm{C}_{37} \mathrm{H}_{47} \mathrm{NO}_{9} \mathrm{~S}$ requires $\mathrm{M}, 681.2971$).

Structure Determination of the Cycloadduct 16b.-Intensity data were collected on an Enraf-Nonius CAD4 diffractometer, $\omega-20$ scan type, graphite-monochromatic $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, $\lambda=1.54184 \AA$. Of 5892 independent reflections collected in the range $1<0<65^{\circ}, 4848$ reflections with $I_{0}>3 \sigma\left(I_{0}\right)$ were taken as observed. The crystal did not show any significant decay during data collection. Positional parameters were determined by direct methods (Monte Carlo method) ${ }^{17}$ using MULTAN ${ }^{18}$ and were refined by full-matrix leastsquares calculations with all non-hydrogen atoms treated anisotropically and hydrogen atoms treated isotropically, using the scheme $w=4 F_{0}{ }^{2} / \sigma^{2}\left(F_{0}{ }^{2}\right)^{2}$ to give the final residuals: $R=$ $7.34, R_{w}=10.3$.

The cell dimensions are: $a=11.90(2), b=15.45(2), c=$ 9.13(2) $\AA, \alpha=98.16(1), \beta=95.79(2), \gamma=100.47(1)^{\circ}, V=$ $1623 \AA^{3}$, space group $=P \overline{\mathrm{I}}, Z=2, D_{\text {calc }}=1.317 \mathrm{~g} \mathrm{~cm}^{-3}$.

Fractional atomic coordinates, tables of bond lengths and angles, as well as anisotropic thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.*

Acknowledgements

We thank Professor A. de Meijere of the Georg-AugustUniversitaet, Goettingen, and Dr. V. Vill of the University of Hamburg for measuring the mass spectra of some of our

[^0]compounds, and this on very short notice. We also thank Dr. H. Tsuzuki of the Center of Advanced Instrumental Analysis, Kyushu University, for helpful discussions on the X-ray crystal structure of compound $\mathbf{1 6 b}$.

References

1 T. Sone, K. Sato and Y. Ohba, Bull. Chem. Soc. Jpn., 1989, 62, 838.

2 H. Zimmer, A. Amer, R. Shabana, D. Ho, H. B. Mark, Jr., K. Sudsuansri and C. Striley, Acta Chem. Scand., 1993, 47, 184.

3 J. M. Barker, J. D. E. Chaffin, J. Halfpenny, P. M. Huddleston and P. F. Tseki, J. Chem. Soc., Chem. Commun., 1993, 1733.

4 M. J. Marsella and T. M. Swager, J. Am. Chem. Soc., 1993, 115, 12214.
5 K. T. Potts and M. J. Cipullo, J. Org. Chem., 1982, 47, 3038
6 T. Thiemann, Y. Lee, Y. Nagano and M. Tashiro, submitted for publication in Tetrahedron Lett.
7 K. Torssell, Acta Chem. Scand., Ser. B, 1976, 30, 353
8 A. M. Naperstkow, J. B. Macauly, M. J. Newlands and A. G. Fallis, Tetrahedron Lett., 1989, 30, 5077.
9 D. N. Reinhoudt, R.T. Gray, C. J. Smit and I. Veenstra, Tetrahedron, 1976, 32, 1161.
10 Ya. L. Goldfarb and M. S. Kondakova, Bull. Acad. Sci. USSR, Div. Chem. Sci. S.S.R. (Engl. transl.) 1956, 1235 (Chem. Abstr., 1957, 51, 5750 e).
11 M. Higaki and N. Furukawa, Book of Abstracts, 24th Congress of Heterocyclic Chemistry, Osaka, Japan, 1993, p. 277.
12 For typical examples of oxidations of sulfoxides to sulfones under PTC conditions see: D. Scholz, Monatsh. Chem., 1981, 112, 241; D. G. Lee and N. Srinivasan, Sulfur Lett., 1982, 1, 1

13 T. Thiemann, Y. Lee, C. Thiemann, T. Sawada, Y. Nagano and M. Tashiro, unpublished work

14 F. Voegtle and E. Weber, Angew Chem., 1974, 86, 126.
15 D. N. Reinhoudt, R. T. Gray, F. de Jong and C. J. Smit, Tetrahedron, 1977, 33, 563.
16 C. J. Pedersen, Fed. Proc., 1968, 27, 1305.
17 A. Furusaki, Acta Crystallogr., Sect. A, 1979, 35, 220.
18 P. Main and S. E. Hull, Acta Crystallogr., Sect. A, 1978, 34, 353.

[^0]: * See Instructions for Authors, in the January issue

